Гаситель пульсаций

Гаситель пульсаций предназначен для уменьшения величины пульсаций давления жидкости, возникающих от неравномерной работы гидронасоса НП-89. Как показал анализ данных отказов и неисправностей элементов гидросистемы, гасители пульсаций, устанавливаемые в настоящее время в гидросистеме самолета Ту-154, не в полной мере справляются с возложенными на них обязанностями, т.е. не в состоянии гасить самые опасные частоты пульсаций давления.

Поэтому в данном дипломном проекте предлагается гаситель пульсаций новой конструкции, главным достоинством которого является расширение функциональных возможностей его путем регулирования управляющего органа (лист 3 графической части).

Предлагаемый гаситель пульсаций состоит из корпуса (1) со штуцерами для подвода и отвода жидкости АМГ-10. В корпусе установлен перфорированный трубопровод (6) и охватывающая его эластичная мембрана (7) с поперечным сечением, уменьшающимся по направлению потока. Конусная вставка (5) охватывает эластичную мембрану и установлена в корпусе с возможностью осевого перемещения. Эластичная мембрана снабжена наружными ребрами, а ее торцы: герметично закреплены в перфорированном трубопроводе. Конусная вставка выполнена с отверстиями для прохода жидкости, которая подается внутрь корпуса через штуцер (11). Между фланцем перфорированного трубопровода и конусной вставкой размещены пружины. Фланец закреплен в корпусе с помощью резьбовой крышки через шарики (4). В конусной вставке и фланце выполнены уплотнительные элементы (12).

Гаситель пульсаций работает следующим образом. Жидкость АМГ-10 от плунжерного насоса поступает по штуцеру в перфорированный трубопровод и через его отверстия воздействует на эластичную мембрану (7), на наружную поверхность которой давит жидкость, подводимая через штуцер (11) и поступающая к поверхности мембраны через отверстия в конусной вставке. Жидкость проходит также по каналам, образованным ребрами (10) на наружной поверхности мембраны и внутренней поверхности конусной вставки (5). При гашении пульсаций давления, амплитуда которых не превышает возможностей мембраны по жесткости, конусная вставка отжата пружинами (9) в крайнее нижнее положение и не влияет на жесткость мембраны.

При необходимости увеличения жесткости мембраны, например, при переходе на режим работы гидросистемы с большим давлением резьбовую крышку (3) смещают по резьбе влево. Это смещение через шарики передается конусной вставке, которая, смещаясь влево, воздействует через ребра на пружинную поверхность эластичной мембраны, сжимая ее. При этом жесткость демпфирующей системы "мембрана - конусная вставка" увеличивается в желаемых пределах, необходимых для гашения пульсаций данной амплитуды.

Функциональное и конструктивно-технологическое решение проекта
Функциональное решение проекта заключается в совмещении открытого и закрытого пространства, это ответ на поставленную задачу о климатических условиях в Республике Беларусь. Так как климат не является постоянным и в теплый период выпадают осадки, то судно должно быть оборудовано навесами, которые защитят пассажиров от ...

Расчёт площадей производственных участков
В случае, если не известна площадь, занимаемая технологическим оборудованием, то площадь производственного участка может быть определена приближённо по числу работающих на участке в наиболее загруженную смену Fу=f1+f2∙(Pт*-1) ,(32) где f1 – площадь на одного работающего, м2/чел. ; f2 – то же на каждого последующ ...

Определение расчетного момента и выбор муфты
По кинематической схеме, представленной на рисунке 1, установлены две муфты. Одна муфта с тормозным шкивом установлена между двигателем и редуктором, вторая соединяет тихоходный вал редуктора с валом барабана. Расчетный момент для выбора муфты с тормозным шкивом, Нм (23) где Тмн – номинальный момент муфты, Нм. Принима ...