Гидравлический расчет установки
Страница 1

Явление кавитации заключается в образовании в жидкости местных областей, в которых происходит выделение (вскипание) парогазовых пузырьков с последующим их разрушением в результате конденсации паров и смыкания пузырьков, сопровождающимися высокочастотными гидравлическими микроударами и высокими забросами давления.

Кавитация может возникнуть в трубопроводах, в насосах, а также во всех устройствах, где поток жидкости подвергается поворотам, сужениям с последующим расширением (в кранах, клапанах, вентилях, диафрагмах) и прочим деформациям.

Кавитация нарушает нормальный режим работы гидросистемы, а в отдельных случаях оказывает разрушающее действие на ее агрегаты.

Особенно отрицательное действие оказывает кавитация на насосы. Она наступает, если давление на входе во всасывающую камеру насоса окажется недостаточным для того, чтобы обеспечить неразрывность потока жидкости в процессе изменения скорости ее движения, задаваемой изменением скорости движения всасывающего элемента насоса.

С появлением кавитации производительность насоса понижается, возникает характерный шум, происходит эмульсирование жидкости, а также наблюдаются резкие частотные колебания давления в нагнетаемой линии и ударные нагрузки на детали насоса, которые могут вызвать выход его из строя. Основным в борьбе с кавитацией применительно к насосам является создание на всасывании (на входе в насос) такого давления, которое было бы способно преодолеть без разрыва потока жидкости как гидравлические потери в линии всасывания, так и инерцию массы столба гидрожидкости.

В общем случае бескавитационную работу насоса можно описать следующим уравнением:

Рб + Рн = hγ - ΣPn - (И2Bxγ/2g) Рк (*)

Где: Рб=2,3 кг/см —225400 Па - давление в гидробаке самолета Ту-154;

Рн - повышение давления подкачивающим насосом;

h =2,5 м - разность между уровнем жидкости в баке и входным штуцером насоса;

γ = 834 кг/м3 = 8173,2 Н/м3 - удельный вес жидкости АМГ-10 при t=20°C;

ΣPn - сумма потерь давления во всасывающей магистрали;

Ивх = 3 м/с - скорость течения гидрожидкости во всасывающей магистрали. Выбрана согласно рекомендациям, приведенным в литературе;

g =9,8 м/с2 - ускорение свободного падения;

Рк - критическое давление, при котором поступает активное выделение воздуха из жидкости. Практически значение Рк может быть принято равным 400 мм рт.ст или Рк=53000 Па.

Потери давления во всасывающей магистрали складываются из потерь давления в:

§ шланге и трубопроводах;

§ закруглениях трубопроводов;

§ холодильнике;

§ самозапирающейся муфте;

§ расходомере-вискозиметре;

§ тройниках;

§ фильтрующем устройстве;

§ присоединительной арматуре.

Для расчета потерь в трубопроводах установки необходимо помимо длины знать их диаметр и характер течения жидкости. Расход жидкости через сечение трубопровода:

Q=(p d /4)* Ивх

Где: d - диаметр трубопровода

(**)

За расчетную величину расхода жидкости Q примем его максимальное значение Q=110 л/мин, или в системе СИ: Q=0,0018 м3/с

Для определения характера течения жидкости в трубопроводе воспользуемся критерием Рейнольдса. Число Рейнольдса

Re=И d/n

Где: v = 3,04°Е при температуре t=20°C - кипнематическая вязкость жидкости АМГ-10;

3,04 градуса Энглера соответствуют 21,2 сст или 0,212 см2/с.

Выражая входные величины формулы в сантиметрах и секундах, получим:

Re = 300*31,2/0,212 = 44151

Поскольку полученное число Re больше критического значения 2300, то можно заключить, что поток в трубопроводах и шлангах установки будет носить турбулентный характер.

Значение числа Re попадает в интервал от 2300 до 80000, следовательно потери на трение в трубопроводах зависят от числа Re.

По формуле Блазиуса коэффициент сопротивления при турбулентном течении:

λ = 0,3164*

λ = 0,3164*44151-0,25 = 0,0218

Потери давления на трение в шланге и трубопроводах определяются из выражения

DРтр= l g(L/d)*(И/2g)

Где: L - суммарная длина коммуникаций во всасывающей линии. Примем L=8,8 м (складывается из 5 м длины шланга, соединяющего самолет с установкой и 3,3 м трубопроводов внутри установки и самолета).

=0,0218*8173,2(8,8/0,0312)*(9*2*9,8) = 23076 (Па)

Потери на преодоление местных сопротивлений:

DР = x*(И g /2g)

Страницы: 1 2 3

Расчет количества автомобилей и водителей
1. Расчет потребного числа ездок где qф – фактическая количество баллонов помещаемых на ТС. Оно задано характеристиками автомобиля (40шт). Отсюда 2. Расчет времени одной ездки 3.Выбор нормативного времени в наряде автомобиля Предварительно принимаем Tн=12ч 4.Расчет времени работы автомобиля на маршруте 5. Расчет возмо ...

Ускорение при разгоне
Ускорение во время разгона определяется для случая движения автомобиля по горизонтальной дороге (уклон ) с твердым покрытием хорошего качества при максимальном использовании мощности двигателя и отсутствии буксования ведущих колес. Ускорение находят из выражения (1.24): , (1.24) где - ускорение автомобиля, м/с; - коэф ...

Расчет интенсивности по направлениям
Интенсивность движения смешанного потока определяется по формуле: , где Иij – входящий транспортный поток по i-му направлению j-ой составляющей, %к – процент к-го вида транспорта, входящего в расчетный поток, Кпрк – коэффициент приведения к-го вида транспорта, входящего в расчетный поток: Кпр Автомобили 1 легковые 1,5 ...